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ABSTRACT

The errors most likely to occur in a high-speed multiplier are
called the iterative errors. An arithmetic coding technique for the
correction of such error patterns is proposed. We present a class of
codes aiid show its erroy. correcting ability. The unique feature of this

code is an iterative decocuing method.
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Defiarition !} E =+ 2

1 INTRODUCTION

Tre hiagi-speed muitiplicr schemes such as the one proposed by
MacSerley { 1) have been well iavestigated and implemeated in many computers.
In such a4 wmultiplier scheme, the multiplier is divided into blocks of two
(or more<) bits eact: and cach block s multiplied to the multiplicant to
form partial fproducts The partial productes are then appropriately shifted
a~d added in a multi-input parallel adder witi: minimun carry provisions.
Tte expected error pattern is guite different from either the nultiple
independent errors or the burst errors. These errorc are shown to be
1terative in nature and of the following special form. We let m = the
lecgth of a bleck in bits, r = the number of blocks, and let E be a single
iterative error

r-1

k

m1l

eiZ , where 0 € k < m and e, = 0 or 1 for all i.

[y I

t

i=0
A iarge class of arithmetic ccdes for the correction of such

¢rtvor: tas been developed by Chien and Hong [2,37. It has lLeen shown that

this class >f ¢odes nas an easy implementation scheme and a nearly oprimal
rate. We propoce a different class of arithmetic codes here, which is based
oo tte cortept of =an iterative decoding method for the iterative errors.
Aritkmetic codes are designed to detect or correct errors in
digital computations. OCne such error may clange many output digits by propa-
gations . Single error corvecting codes are summarized in Peterson [ 4], and
maltiple 1ndependeu’ error correcting codes have been studied by Barrows | 51,
Mandelbaum { 6] Chang and Tsac-Wu [ 7] and Chien, llong, and Preparata {6,91.
Bur<T errsr correcting arithmetic cedes have been investigated by Stein [ 101,

Crien L 11y, and Maadelbaum [ 12].
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Arithmetic codes are oi the form AN, whure A is a tixed integer
called the gencrator. N is an integer in the interval (0, B-1), and B is
the number of cede words. If the code length is n, B is the smallest
integer such that AB>2".  In the binary case, A is obvicusly an odd number.
The error correcting capability of ordinary AN codes depends on the minimum
distance of the coede, which iu turn depends on the generator A. A corrupted
signal (correct signal plus error) wodule A is called the syndrome of the
er-or which is the same as the error medulo A Syndrome of an erior,
usually denoted as S, then lecads to the correct decision of the error

through the decoding algorithms.

I1. DERIVATION OF THE CODE

It follows from the definition that to correct the error cne must
correctly determine the polarity of the erior, the position ot the error (%)

and the distribution of the erroneous digits, i.e , thec set of e. s The
i
class of codes dealt with in this work 1s for the cases when the number of
t
blocks, r, is two to the some power, i €., r = 2 for some ty >1 Mote
t, i
i mr . m2 \
that the length of the code 1: w2 and 27 -1 is now divisible by 2 + 1

for all 0 < i< tl-l

The Pclarity of Error

Let t . be some integer less than t Consider thc positive error

_t¢ 0 1
module 2~ -1  Clearly
Y %o ¢
k 2 -1 mi ' -l mi m2 O—l
E=E's +2 e 20 =2 £.27° mod
i=Q0 . 1=0




t. -t t

where 0 < fi <2 bt for all 0 <€ 1< 12 0-1. Thus, each fi can have at the
mest (tl-to)l's in ite binary form. 1f tlmto < %m, the whole residue
t -1

must have less than (2 m) 1l's,

- . 1
Lemma 1 Given t, > t.- —m (L)
_— tO G 1 2 t -1
S Y E .o 2m2 -1 has less than (2 0 m) 1's if and only if the polarity

of error is positive.

Troof We must show that when the polarity is negative, S has greater than
t -1

2 0
(2 0 m) 1's. Let E = -E' and S' = E' mod Zm -1. We knew that S' has
t.-1
les. than (2 m) 1's. Therefore,
t
0
s =2 .1 .g
to to-l to-l
and the number of ones in S is greater than m2 - (m2 ) = m2 . We

mention here that S = 0 enly if E = 0, i.e., no error.

Q.E.D
Intermediate Exror Pattern
Using the same notation as E =+ E', or
t
1
2 -1
=25 e2™ (2)
. i
i=0
we now define an intermediate errcr pattern as
3
e, =E' mod 272 -1 (3)




Clearly, €c = E'; and from Eg. (2) we have
1

for all t, < j< ¢t

0 L

. 291
£ . =2 X aiZ (4)

J i=0

tl”j m2j
where 0 € a, €2 and 0 € k < m, Also, note that &€, 5 ¢& mod 2 -

< 1 Em !

for all j < t-

Consider an intermediate error pattern, £, , given in an ordinary

3

binary form. Each &y becomes a burst™ of length at most tl-j with at least

m-(tl-j) 0's in between. These bursts can be uniquely recognized if

tl-j < 1 m, {.¢., 1f } > - % m. Let kj be the meximum integer such that
k £

23a, <217 for all i, for the given €  of Eq. (4). Clearly, k > O.

i i J
Now denate by éj the following equation which is numerically the same as Bj.
]
2--1 k
g. =2k T g2 1y,™ (5)
) =0 *

Lemma 2 If tO > tl- % m, éj can be uniquely determined from the binary

pattern of Cj, for all t . < j< t -1.

0 1

> t,- % m implies j > t - % m for all given j's. Thus, the

1
bursts of ai's are uniquely recognized for all j. Now mark the position of
— %%

[g] th bit after the longest burst and each m th bit positions thereafter,

*
The term, "burst', denotes a binary pattern beginning and ending with 1's.
A single 1 is considered as a burst of length one. A cyclic connection
between m2J th bit and the first bLit is assumed.

(x] denores the least integer greater than or equal to x.

%
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Proof From Eq. (4), we know that 0 < bi < 2

J
cyclically around the entire length of 2m2 bits. These marks fall among

the O's separating the bursts. Let the position of the smallest marked

bit be k', vie have

k! J
*r @2y 2™ e moa 2™ -1
i=0 3
K’ t,-3
Now, change k' until (aiZk k ) <2 L7 gor all i, for the first time. By

7

the definition of k.,
KJ

that any time (312 J) becomes an odd number, k

k' = k-kj and k-k’' = kj for Eq. (5). We mention here

I = 0 and the position of

the error, k = (k-k,).

] Q.E.D.

k
Suppose a binary pattern of Cj is given and (k-kj) and (aiZ j)'s

are all decided according to lemma 2. We let

1
291 .
a/ = z(k'k) E b/ zml (6)
i+l o i ¢
i=0
] tl' -1 7 ? k'i
where 0 < bi <2 and bi + bi+2j = (ai2 ) for all 1i.
K 23" mi ty-ik, ##1
Lemma 3 Let €., =2 £ b2, 0<b <2 ) for all 0 < i< 27 -1,
i=0

€. -3-1
o for all i. Also, from

the definition of €., a, = b, + b. 4 for all 0 € i< 23-1. Now, since
3 i i i+24 7, - -
kj tl-j kj - tl-j-'kj
(a12 ) <2 , (bi + bi+Zj) <2 . Thus, bi <2 regardless

of k..
]




The B-Code

Define a class of integers, Bj, as the following. B

S = = =~ TTI——_—pee—— S I T e ey e———

3

is a prime

factor of 2m2 +1, such that x = m2j is the least positive solution for

2x+1 = 0 mod Bj. Sj is said to have order n if

PR LMY

i 3

T e2™ #0 mod 2rn2 +1 implies I
i

1=0 i=0

where e, = 1l or 0 for all 1. An equivalent condition is

21 mi
Z a2 #0modpP
. i
i=0
n-1 : '
where Iail <2 for all i and not all a,'s ar

eiZmi # 0 mod B

J

e 0.

h|

(7)

Finding the order of given Bj seems to be a difficult number tiieory

problem. But one can easily find the order by a computer programming. Table 1

shows a short list of B,'s and the orders. It appears that all the Bj's have

]

order at least one.

Table 1. B, and order.

3
m j Bj order m 3 Bj order
3 1 13 2 6 4 97 2
3 2 241 2 6 8 193 1
5 1 41 2 7 2 29 3
5 2 61681 8 7 2 113 4
6 1 241 8 7 4 1579031 5
6 2 673 2 7 8 5153 1




t
For a given m and r = 2 1, the B-code is defined under the follow-

ing assumptions. 1) tl > tO > tl - % m and t0 > 0; 1ii) there exist Bj's

(t, € 31 < t,-2) of order at least t.-3+2 and B, -, of order 2. W.en such
0--"-"1 1 tl-l

8 .'s exist we define the generator of the P-code as

3

t
m2 0

Ay = (27 1Bty B . B (8)

t0+1 tl-l
We mention hare that this generator divides Zmr-l and therefore resembles

the form of the generators for ordinary multiple error correcting arith-

meti¢ codes [ 5-10].

I1I. TITERATIVE DECODING

The decoding is done by iteratively determining the intermediate

error patterns. We first show how € is obtained from given & , and present

1 J
the complete decoding algorithm. An example follows for illustration.

Lemma &4 Assume the order of B, is greater than or equal to t1-3+2.

J
’ = P H -
€j+1 & &j+1 mod Bj if and only if €j+1 €j+1, for all ty <3< ty 1.
, = p =p! ;
Proof We must show that 8j+1 = 8j+1 mod Ej implies 8j+1 8J+1. Now,
SR LA NS k-k, 2
e ,=2 4z bv2l27=2 L b 2 modB
j' i=0 i=0 j
or
2« -
L (b2 J-b’i)z =0 mod B
i=0




10
but
. o3
M e U2 g B,
Thus 2j-1 kj , , oi
iEO {(bi-bi+2j)2 - (b - bi+2j)}2 = 0 mod E3j

1tk ot R
stnce | (5;-b, )| <2 by lemma 3 and |by - bi, ,j| <2 ,
( o - b B
h(bi-bi+2j)2 - (b - bi+zj)” 22 + 2 = or atia. by

the definition of ﬁj.

But

Therefore

Theroem 9

k

Ky
(b-b 2 3 - (b

K, k.
[} .
B+ a2 i 101409

n
Y]
no

="

L}

—~
o
.é;

b = b2 I for all 0< i< 2%,

Q.E.D.

The B-codes, when exist, correct all single iterative errors.

Proof Let the initial sxndrome be Sol= ABN + E = E mod AB.

Step 1)

Step 2)

2%0 t

If h(S mod 2" -1) < m2 , the polarity is positive, and other-

wise negative. (By lemma 1.) If positive S1 = SO’ and if negative

$, =

g =E
%o
pattern.

= AB - SOt In either case S1 = E mod AB.

t
m2 O

=S, mod 2 -1. However, the 8t obtained now is in bina v

0
Iteratively follow the next step for tOSjStl-Z.



*—

11

Step 3) From < binary 6j, find Qj by lemma 2. Using Sl ZE, mod B , find

3 3
E 1
ejrl unjyuely from éj by lemma &.
2t1-1
. Sk T ng - _
Step 4) Let Et o=l z aiZ . 1)y If S1 = 0 mod Bt RE then a, = 0
17 =0 1
or 2 for .1 i and k = k. ii) 1If S, # 0 mod B and a, = 0 or
. tl-l i
2 for all 1, ti.a k= k' +1. {ii) If S, # 0 mod B and a, = 0,
1 tl-l i
1, or 2 for all i, then & = k’
c,-1
A | : i
Step 3) Leve =& =2°'f Ta ¥k ™
17t i=0
t,-1
’ k 2 ’ -1 ’ mi
Let €t =2 T € 2 9
1 i=0
. , p _ kik . .
where 0 < e. < ! for all i 2nd e +e =a.2 for all i.
- i~ . 1."_2111-1 i
By the samf arguments as !.mma &, 8; = St = E if and only if
: 1 1
£ =3 pol’_ . Q.E.D.
104 .

Exarrple Let m = & Tatle 1 gives Bl = 241 with order 8 and 62 = 673 wit

order 2. Let t1 =2, i.e r = 8. to = 1 satisfies the condition for

B-code, thus

A, = (27%-1) 2417673

B

the rate of which is approximately 0.4. Suppose the error is (eo.el,,..,e7) =

(16110101), k = 3 and of positive polarity. 62 = E’ mod 212-1 becomes the

following binary pattern with the marks, T . ([%] = 3)




12
0 1 2 3 4 5 6 7 8 9 10 11 - binary positions
e 0 0 O 1 o 0 1 1 0 = (11) is the lcngest burst
Tfirst mark Tsecond mark -~ marking B
k=1, (al?k-k ) =8, (a k K’ )y = 12 =~ applying lemma 2
k2 k2
(k-kZ, =3, (a12 )y =2, (a22 ) 2
g, =202 2%+ 3:2% ~ Eq. (5)
= 2 4 ’ == -

0<b <2 b0+b2 =2, bl+b3 3 for Eq. (6)
g, = 2’ (1-2% Q4128 10128 24556 3 -~ by lemma &

S1 = E1 # 0 mod 673, thus k = 3 —~ by step 4

14 4 _ I= r= - .

e /0, e0+e =e +e5 ytegTes=e, 1 Eq. (9), Step 5
83 = Sl mod 673 when (eo,el,.‘.,e;)=(10110101). Thus decoded.

IV. CONCLUSION

The B-codes are based on an interesting decoding method, namely,

an iterative decoding for the iterative errors.

iteratrve error,
time doubling the length
cperations are necessary
technique may be desired
The B-codes of
for it is

ever, large m,

B-code is generally less

for large m, the rate of

From the syndrome of an

intermediate error patterns are iteratively decoded, each

of the pattern. Although some searching and matching

at each step, the unusual feature of this decoding
for some applications.
How-

high rate do not seem to exist for small m's.

's exist. The rate of the

3

than the rate of the codes described in

very probable that such B

3]). aga®n,

B-code is likely to improve.
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The deceder design, & theory ov ¢ ciwple method to find the order

and a proof of exi.tence of E-codes £o¢ large m are interesting

problems for further research. Also, the iterative decoding concept may

find a useful applicaticn in the polynomial codes.

(3]

(4]

(5]

~—
(=]
)

(7]

(8]

(9]

(10]

(11]

(12]
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